Identification of a GATA-overlapping sequence within the enhancer of the murine GPIIb promoter that induces transcriptional deregulation in human K562 cells.

نویسندگان

  • P Albanese
  • M Leboeuf
  • J P Rosa
  • G Uzan
چکیده

The human and the murine glycoprotein platelet IIb (GPIIb) promoters are megakaryocyte specific in human and murine cell systems, respectively. Here we show that the murine promoter is, however, highly active when transfected in K562 human cells in which the human promoter is almost inactive. A murine promoter, in which the enhancer element was replaced by the human, retrieves its megakaryocytic specificity in human cell lines. The human and murine GATA-binding sites located in the enhancer region display slight sequence divergence next to the consensus GATA core sequence. Gel shift experiments show that, although the murine and the human GATA sequences both bind GATA-1, the murine sequence alone forms an additional complex (B) not detected with the human sequence. When the murine GATA-containing region is replaced by the human in the context of the murine GPIIb promoter, megakaryocyte specificity is restored in the human cell lines. A G nucleotide 3 to GATA appears crucial because its substitution abrogates B but not GATA-1 binding and restores megakaryocyte specificity to the murine promoter. Conversely, substitution of the human GATA-1 binding sequence by its murine homologue that binds both GATA-1 and complex B induces an abnormal activity for the human promoter in K562 cells. Altogether, our data suggest that limited changes in the GATA-containing enhancer of the GPIIb promoter can induce the recruitment of accessory proteins that could be involved in alteration of a megakaryocyte-restricted gene activation program. (Blood. 2000;96:1348-1357)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The tissue-specific transcriptional regulation of the megakaryocytic glycoprotein IIb gene is controlled by interactions between a repressor and positive cis-acting elements.

Much information on regulation of the transcription of megakaryocytic genes stems from studies on the glycoprotein IIb (GPIIb) gene, an early and specific marker of this lineage. Transcriptional activity is controlled by the association of positive promoter elements corresponding to binding sites for the transcription factor GATA-1 and a member of the Ets family. In the present study, we show t...

متن کامل

Transcriptional regulation of GATA-3 by an intronic regulatory region and fetal liver zinc finger protein 1.

GATA-3 is a T cell-specific transcription factor and is essential for the development of the T cell lineage. The transcriptional regulation of GATA-3, however, remains elusive. In this study, we report the identification of a regulatory region located within the first intron of the murine GATA-3 gene. The intronic regulatory region contains both a positive and a negative cis-acting element but,...

متن کامل

Activation of erythroid-specific promoters during anthracycline-induced differentiation of K562 cells.

Anthracycline antitumor drugs such as aclacinomycin (ACM) and doxorubicin (DOX) used in subtoxic concentrations induce erythroid differentiation of the erythroleukemic cell line K562. To elucidate the possible role of erythroid genes of the erythropoietin receptor (EpoR) and the transcription factor GATA-1 in this effect, the regulatory regions of the above genes and human epsilon- and gamma-gl...

متن کامل

Regulatory elements in the promoter of a murine TCRD V gene segment.

TCRD V segments rearrange in an ordered fashion during human and murine thymic development. Recombination requires the accessibility of substrate gene segments, and transcriptional enhancers and promoters have been shown to regulate the accessible chromatin configuration. We therefore investigated the regulation of TCRD V rearrangements by characterizing the promoter of the first TCRD V segment...

متن کامل

The Anti-cancer effects of Celastrol on K562 cell line

  Background and Objective: The level of NF-κB factor expression (a transcriptional factor which increases the expression of inflammatory genes) is often increased in various human cancers. Therefore, NF-κB inhibitors such as Celastrol may prevent cancer development. The purpose of this study was to evaluate the anticancer effects of Celastrol on K562 cells proliferation. Materials and Methods:...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 96 4  شماره 

صفحات  -

تاریخ انتشار 2000